Randomized Alternating Least Squares for Canonical Tensor Decompositions: Application to A PDE With Random Data
نویسندگان
چکیده
This paper introduces a randomized variation of the alternating least squares (ALS) algorithm for rank reduction of canonical tensor formats. The aim is to address the potential numerical ill-conditioning of least squares matrices at each ALS iteration. The proposed algorithm, dubbed randomized ALS, mitigates large condition numbers via projections onto random tensors, a technique inspired by well-established randomized projection methods for solving overdetermined least squares problems in a matrix setting. A probabilistic bound on the condition numbers of the randomized ALS matrices is provided, demonstrating reductions relative to their standard counterparts. Additionally, results are provided that guarantee comparable accuracy of the randomized ALS solution at each iteration. The performance of the randomized algorithm is studied with three examples, including manufactured tensors and an elliptic PDE with random inputs. In particular, for the latter, tests illustrate not only improvements in condition numbers, but also improved accuracy of the iterative solver for the PDE solution represented in a canonical tensor format.
منابع مشابه
SPALS: Fast Alternating Least Squares via Implicit Leverage Scores Sampling
Tensor CANDECOMP/PARAFAC (CP) decomposition is a powerful but computationally challenging tool in modern data analytics. In this paper, we show ways of sampling intermediate steps of alternating minimization algorithms for computing low rank tensor CP decompositions, leading to the sparse alternating least squares (SPALS) method. Specifically, we sample the Khatri-Rao product, which arises as a...
متن کاملTensor Decompositions with Banded Matrix Factors
The computation of themodel parameters of a Canonical Polyadic Decomposition (CPD), also known as the parallel factor (PARAFAC) or canonical decomposition (CANDECOMP) or CP decomposition, is typically done by resorting to iterative algorithms, e.g. either iterative alternating least squares type or descent methods. In many practical problems involving tensor decompositions such as signal proces...
متن کاملA Scalable Optimization Approach for Fitting Canonical Tensor Decompositions
Tensor decompositions are higher-order analogues of matrix decompositions and have proven to be powerful tools for data analysis. In particular, we are interested in the canonical tensor decomposition, otherwise known as CANDECOMP/PARAFAC (CP), which expresses a tensor as the sum of component rank-one tensors and is used in a multitude of applications such as chemometrics, signal processing, ne...
متن کاملRandomized interpolative decomposition of separated representations
We introduce an algorithm to compute tensor Interpolative Decomposition (tensor ID) for the reduction of the separation rank of Canonical Tensor Decompositions (CTDs). Tensor ID selects, for a user-defined accuracy ǫ, a near optimal subset of terms of a CTD to represent the remaining terms via a linear combination of the selected terms. Tensor ID can be used as an alternative to or in combinati...
متن کاملSome Convergence Results on the Regularized Alternating Least-Squares Method for Tensor Decomposition
We study the convergence of the Regularized Alternating Least-Squares algorithm for tensor decompositions. As a main result, we have shown that given the existence of critical points of the Alternating Least-Squares method, the limit points of the converging subsequences of the RALS are the critical points of the least squares cost functional. Some numerical examples indicate a faster convergen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 38 شماره
صفحات -
تاریخ انتشار 2016